Supported layers and functions
The Edge optimization is compatible with Tensorflow/Keras .h5 models generated with a Tensorflow backend of version 2.x. Models containing unsupported layers will fail to convert.
Supported TensorFlow layers
- Activation (TensorFlow Class Activation)
 - Average Pooling 1D (TensorFlow Class AveragePool1D)
 - Average Pooling 2D (TensorFlow Class AveragePool2D)
 - Batch Normalization (TensorFlow Class BatchNormalization)
 - Convolution 2D (TensorFlow Class Conv2D)
 - Convolution 1D (TensorFlow Class Conv1D)
 - Dense (TensorFlow Class Dense)
 - Dropout (TensorFlow Class Dropout)
 - Flatten (TensorFlow Class Flatten)
 - Gated Recurrent Unit (TensorFlow Class GRU)
 - Global Max Pooling 1D (TensorFlow Class GlobalMaxPool1D)
 - Global Average Pooling 1D (TensorFlow Class GlobalAveragePool1D)
 - Long Short-Term Memory (TensorFlow Class LSTM)
 - Max Pooling 2D (TensorFlow Class MaxPool2D)
 - Max Pooling 1D (TensorFlow Class MaxPool1D)
 - Reshape (TensorFlow Class Reshape)
 
Supported TensorFlow activation functions
- Hard Sigmoid
 - LeakyReLU (TensorFlow Class LeakyReLU)
 - ReLU (TensorFlow Class ReLU)
 - Sigmoid
 - Softmax
 - Tanh
 
Supported Imagimob layers and functions
- Assert Array
 - Clear
 - Copy
 - Discrete Cosine Transform
 - Addition
 - Argmax
 - Division
 - Dot product transpose
 - Hann smoothing
 - Multiplication
 - Frobenius norm
 - Product
 - Real Discrete Fourier Transform
 - Average Subtract
 - Sum
 - Power to Decibel
 - Average
 - Subtraction
 - Add an extra dimension of size 1
 - Complex Discrete Fourier Transform
 - Max
 - FFT Shift
 - Subtraction Immediate Reverse (A-x)
 - Logarithm
 - Mel Filterbank
 - Power
 - Sliding Window